

PhillnBioMed, Université de Bordeaux

6 June 2018

Alexander.Bird@kcl.ac.uk

introduction — the replication crisis

52% of 1,576 scientists taking a survey conducted by the journal Nature agreed that there was a significant crisis of reproducibility

Amgen successfully replicated only 6 out of 53 studies in oncology

And then there is social psychology ...

introduction — the base rate fallacy

screening for a disease, which affects 1 in every 1,000 individuals, with a 95% accurate test

an individual S tests positive, no other risk factors; what is the probability that S has the disease?

Harvard medical students, 1978

II out of 60 got the correct answer

introduction — the base rate fallacy

introduction — the base rate fallacy

base rate of disease = 1 in 1,000 = 0.1% (call this π)

false positive rate = 5% (call this α)

false positives among the 999 disease-free greatly outnumber the 1 true positive

two types of error and accuracy

type of error	error rate	accuracy	type of accuracy
Type-I (false +ve)	α	$I-\alpha$	confidence level
Type-II (false –ve)	eta	$I-\beta$	power

do not conflate

False Positive Report Probability (FPRP)

Pr (S does not have the disease, given that S tests positive for the disease)

with

False positive error rate (α)

Pr (S tests positive for the disease, given that S does not have the disease)

do not conflate

False Positive Report Probability (FPRP)

Pr (S does not have the disease, given that S 98% tests positive for the disease)

with

False positive error rate (α)

Pr (S tests positive for the disease, given that S does not have the disease) 5%

mad scientist Dr M generates crazy hypotheses but tests then stringently

 π = 0.1% (base rate of truth in Dr M's hypotheses) accuracy = 95% (of the tests of his hypotheses)

> Pr (one of Dr M's hypotheses is true, given that it passes a stringent test) = 2%

sane scientist Prof S generates hypotheses in a new field and tests then stringently

 π = 10% (base rate of truth in Prof S's hypotheses) accuracy = 95% (of the tests of her hypotheses)

> Pr (one of Prof S's hypotheses is true, given that it passes a stringent test) = 32%

do not conflate

False Positive Report Probability (FPRP)

Pr (hypothesis is false, given that it passes the experimental test)

with

False positive error rate (α)

Pr (hypothesis passes the test, given that it is false)

1. low π (background rate of truth) 2. non-negligible α

I. low π

hypotheses derived from underlying theory

" I. If <u>the standard model</u> is correct, then the hypothesis that **the Higgs particle exists** should be true.

2. There is very strong evidence that the standard model is correct."

I. low π

hypotheses derived from underlying theory

weak underlying theory

 weak connection between theory and derived testable hypotheses

• weak evidence for the theory

(example: Bapineuzumab)

I. low π

hypotheses derived from underlying theory

"I. If <u>the amyloid cascade hypothesis</u> is correct, it is possible that reduction in plaques will reverse Alzheimer's, and so conceivable that **Bapi will help Alzheimer's patients**.

2. The amyloid cascade hypothesis may be correct but the evidence is far from conclusive"

I. low π

external pressure to develop new clinical interventions

2. non-negligible α

convention: accept target hypothesis (reject null hypothesis) if p-value is less than predefined value for α (usually 0.05)

type-I errors will occur in 5% of false hypotheses tested

2. non-negligible α

compare physics convention is 5σ

type-I errors will occur in 1 in 3 million false hypotheses tested

I. low statistical power

2. publication bias

3. bias, questionable research practices, and fraud

what is to be done?

Ι.	live with it
	but support replication better
2.	increase π
	more basic science
3.	decrease α
	trade-off between low $lpha$ and
	effect size

two types of error and accuracy

type of error	error rate	accuracy	type of accuracy
Type-I (false +ve)	α	$I-\alpha$	confidence level
Type-II (false –ve)	eta	$I-\beta$	power

	hypothesis is true	hypothesis is false
passes test	π (I – eta)	(Ι – π) α
fails test	πeta	$(I - \pi)(I - \alpha)$

FPRP =
$$\frac{(1-\pi)\alpha}{(1-\pi)\alpha + \pi(1-\beta)}$$

False Positive Report Probability (FPRP) =

Pr (hypothesis is false, given that it passes the experimental test)

often the fallacy is made of confusing FPRP with:

Pr (hypothesis passes the test, given that it is false)

the latter is α

if $\pi = 0.1$ and $\beta = 0.05$ for FPRP < 0.05 then $\alpha < 0.0056$

I. low statistical power

$$\mathsf{PPV} = \frac{\pi(1-\beta)}{(1-\pi)\alpha + \pi(1-\beta)}$$

decrease $\beta \rightarrow$ increase PPV

2. publication bias

3. bias, questionable research practices, and fraud

I. low priors

psychology: hypotheses suggested by observational studies, unsystematic observation or intuition

I. low priors

hypotheses modelled on other hypotheses

suggestive but not a source of strong hypotheses

falsity feedback effect: hypotheses modelled on false hypotheses

header

I. history of science

- 2. use of psychology
- 3. socializing science

note that it is the use made of these that is original in *Structure*

> theoretical history of science