Key Concepts in Neuroimmunology, a dialogue between Philosophers and Scientists

Basophil

Agnès Nadjar NutriNeuro, UMR INRA 1286 University of Bordeaux, France

Eosinophil

Neutrophil

Lymphocyte

Neuro

BORDEAUX

Dendritic cel

Monocyte

neurocampus

MICROGLIA: THE BRAIN INNATE IMMUNE SYSTEM

THE CNS: A SITE OF LIMITED IMMUNE SURVEILLANCE

MICROGLIA: THE RESIDENT IMMUNE CELLS OF THE BRAIN

(Ransohoff, 2016)

THE DISCOVERY OF MICROGLIAL CELLS

PIO DEL RIO HORTEGA (1882-1945)

SANTIAGO RAMON Y CAJAL (1852-1934)

✓ FIRST CALLED "MICROGLIA" AROUND 1920✓ BASED ON NISSL STAINING

(Rio-Hortega P del. 1932. Volume 2. Edited by W Penfield, Hoeber, New York, pp. 482-534)

ORIGINAL STATEMENTS FROM HORTEGA

- 1. Microglia enter the brain during early development.
- 2. These invading cells have amoeboid morphology and are of mesodermal origin.
- 3. They use vessels and white matter tracts as guiding structures for migration and enter all brain regions.
- 4. They transform into a **branched**, **ramified morphological** phenotype in the more mature brain (known today as the resting microglia).
- 5. In the mature brain, they are found almost **evenly dispersed** throughout the central nervous system and display little variation.
- 6. Each cell seems to occupy a **defined territory**.
- 7. After a **pathological event**, these cells undergo a transformation.
- 8. Transformed cells acquire amoeboid morphology similar to the one observed early in development.
- 9. These cells have the capacity to migrate, proliferate and phagocytose.

Still valid today

CNS IMMUNE REGULATION: THE CLASSICAL VIEW

(Hanisch and Kettenmann, Nature Neuroscience, 2007)

(Gentleman, Neuropathology and Applied Neurology, 2013; Patel et al., Int J Physiol Patho Pharm, 2013; Aguzzi et al., Science, 2013)

PHENOTYPIC PLASTICITY OF MICROGLIA

EACH PATHOLOGICAL SITUATION IS ASSOCIATED TO A UNIQUE PHENOTYPIC SHIFT

(Perry et al., Nature Reviews Neurology, 2010)

MICROGLIA IS NOT JUST AN IMMUNE CELL

MICROGLIA ENTERS THE BRAIN VERY EARLY DURING DEVELOPMENT

(Ginhoux et al., Frontiers in Cellular Neuroscience, 2013)

MICROGLIA IS INVOLVED IN CNS DEVELOPMENT

(Frost and Schafer, Trends in Cell Biology, 2016)

MICROGLIA: FAR FROM BEING « DORMANT SOLDIER »

Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo

Axel Nimmerjahn,¹ Frank Kirchhoff,² Fritjof Helmchen^{1*}

27 MAY 2005 VOL 308 SCIENCE

(Nimmerjahn et al., Science, 2005)

MICROGLIA MAKES CONTACTS WITH NEURONS

MICROGLIA NEVER WALKS ALONE

THE BRAIN IMMUNE SYSTEM ANATOMY MATTERS

Debbie Maizels/Springer Nature

(Engelhardt et al., Nature Immunology, 2016)

CNS-ASSOCIATED LEUKOCYTE DIVERSITY IN THE STEADY-STATE

CNS-ASSOCIATED LEUKOCYTE DIVERSITY IN THE STEADY-STATE

BORDER-ASSOCIATED MACROPHAGES (BAM)

√ 4 SUBSETS OF BAMS.

V DIFFERENT LOCATIONS WITHIN THE CNS

3

DENDRITIC CELLS

DAPI CD11c Iba1 MHCII

LEUKOCYTES TURNOVER

AGING CAUSES AN ALTERED CNS IMMUNE LANDSCAPE...

... AND A SUBSET OF REACTIVE MICROGLIA EMERGES

AUTOIMMUNE NEUROINFLAMMATION EAE MODEL

CONCLUSION THE CNS IMMUNE SYSTEM: NEW CONCEPT

CONCLUSION THE CNS IMMUNE SYSTEM: NEW CONCEPT

V WHAT IS THE BRAIN IMMUNE SYSTEM?

- **V** WHAT IS ITS ROLE? STEADY-STATE, PATHOLOGY?
- **V HOW DO LEUKOCYTES COORDINATE THEIR RESPONSE IN THE CNS**
- **V** WHAT IS THE ROLE OF MICROGLIA UNDER IMMUNE ACTIVATION?
- **V** INTERACTION WITH PERIPHERAL IMMUNE SYSTEM?
- ✓ IS THERE A FRONTIER BETWEEN PERIPHERAL AND CENTRAL IMMUNE SYSTEMS? ROLE OF THAT FRONTIER IN IMMUNE RESPONSE

