Bordeaux 15 février 2019

What is stemness and how does that matter?

Lucie Laplane Chargée de recherche CNRS IHPST, Université Paris 1 Panthéon-Sorbonne UMR1170, Gustave Roussy lucie.laplane@gustaveroussy.fr

Outline

Stem cells: the classical view

•

•

_

_

CELL TYPES

Differentiation hierarchy

• Cloning • iPSC

John Gurdon

Shinya Yamanaka

Nobel Prize for Physiology or medicine 2012 "for the discovery that mature cells can be reprogrammed to be pluripotent"

Plants

Grafi. Dev Biol 2004. Lohmann, Springer 2008.

Regeneration

Bernardos et al. J Neurosci 2007 Ramachandran, Fausett & Goldman. Nat Cell Biol 2010 Wan, Ramachandran & Goldman. Dev Cell 2012

Echeverri, Clarke, & Tanaka. Developmental Biology 2001 Nye, et al. Dev Dyn 2003 Satoh, Bryant & Gardiner. Dev Growth Differ 2008 Satoh, et al. Dev Biol 2008

Blanpain & Fuchs. Science 2014 Tetteh, Farin & Clevers. Trends Cell Biol 2015 Donati & Watt. Cell Stem Cell 2015 Visvader and Clevers. Nature Cell Biol 2016

Mammal/Human

Cancer

- Ge et al. *Cell* 2017.
- Shimokawa et al. Nature 2017.
- De Sousa e Melo et al. Nature 2017.
- Davis et al. Nature medicine 2015.
- Krieger and Simons. Development 2015.
- Pereira et al. Frontiers in Oncology 2015.
- Plaks, Kong, and Werb. Cell Stem Cell 2015.
- Safa, et al. Genes & Diseases 2015.
- Singh, et al. EMBO 2015.
- Van Keymeulen, et al. Nature 2015.
- Ye, et al. *Nature* 2015.
- Auffinger et al. *Cell Death and Differentiation* 2014.
- Easwaran et al. Molecular Cell 2014.
- Pattabiraman and Weinberg Nature Reviews. Drug Discovery 2014.
- Chaffer et al. Cell 2013.
- Marjanovic, Weinberg, and Chaffer. *Clin Chem* 2013.
- Zhang, et al. Stem Cells 2013.

- Zhou, et al. Quantitative Biology 2013.
- Zhu, et al. Cancer Cell International 2013.
- Landsberg et al. Nature 2012.
- Quail, Taylor, and Postovit. *Current Stem Cell Research & Therapy* 2012.
- Vermeulen, et al. Lancet Oncol 2012.
- Yang, et al. British Journal of Cancer 2012.
- Chaffer et al. PNAS 2011.
- Gupta et al. Cell 2011.
- Lee et al. *International Journal of Hematology* 2011.
- Thirant, et al. PLoS One 2011.
- Hoek and Goding. *Pigment Cell & Melanoma Research* 2010.
- Oliveras-Ferraros, et al. *Rejuvenation Research* 2010.
- Vermeulen, et al. Nat Cell Biol 2010.
- Dufour et al. Stem Cells 2009.
- Morel et al. PLoS One 2008.
- Rapp, Ceteci, and Schreck. Cell Cycle 2008.

Brawley & Matunis. Science 2004 Cheng J, et al. Nature 2008 Kai & Spradling. Nature 2004 Sheng, Brawley & Matunis. Cell Stem Cell 2009 Barroca et al. Nat Cell Biol 2009

The stem cell niche: two views

Definition 2 (inducing-niche): The niche <u>determines</u> stemness

Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4(1-2), 7–25.
Schofield, R. (1983). The stem cell system. Biomed Pharmacother, 37(8), 375–80.

\rightarrow Inducing-niche (def 2) \leftarrow

→ How do cells acquire stemness?
→ Is the niche necessary?

Gupta et al. Cell 2011

Outline

Conflicting views of stem cells

What is stemness?

Does the microenvironment play a determinant role in stemness?

What is stemness? The classical view

Example: Atomic structure of elements

Stemness as a relational property

Definition: intrinsic property whose expression depends on extrinsic factors

Example: Fragility

Hematopoietic stem cells

Stemness as a relational property

Definition: a relational property is a property that emerges from a particular relationship between two entities.

Example: Body weight

Example: Germ line

Stemness as a systemic property

Definition: a property (generally a function) maintained by a system

Example: Breast cancer cell lines

Gupta et al. Cell 2011

Outline

Outline

The CSC model

Reya et al. Nature 2001

CSCs-targeting therapeutic strategy

CSC targeting

CSCs-targeting therapeutic strategy

CSC targeting

CSCs-targeting therapeutic strategy

CSC targeting

Targeting the niche-cell relationship?

Outline

Eric Solary

William Vainchencker

• Constitutive activation of signaling pathways and niche degradation in myeloproliferative neoplasms

• Constitutive activation of signaling pathways and niche degradation in myeloproliferative neoplasms

Monocytes/macrophages transformation by intracellular parasites

Jonathan Weitzman's courtesy

Monocytes/macrophages transformation by intracellular parasites

Jonathan Weitzman's courtesy

• Epigenetic alterations and cell plasticity

Landau et al. Cancer cell 2014

• Epigenetic alterations and cell plasticity

Landau et al. Cancer cell 2014

- 1. Stemness can be a different type of property in CSCs as compared to their normal counterparts
- 2. Can change throughout disease progression
- 3. Depends on the alterations
- 4. Depends on the cell of origin

Latil et al. Cell Stem Cell 2017

- 1. Stemness can be a different type of property in CSCs as compared to their normal counterparts
- 2. Can change throughout disease progression
- 3. Depends on the alterations
- 4. Depends on the cell of origin

- Needs experimental validations
- Might require therapeutic adaptations
- Stemness transitions: cause or consequence of disease occurrence/progression

Outline

"No such thing as a fish"

"No such thing as a stem cell?"

Arendt 2008

M. Vervoort E. Gazave P. Kerner

Institut Jacques Monod

"No such thing as a stem cell?"

Conclusion

Stemness identity should be address in all stem cell types

> And in cancers depending on oncogenic alterations/cell of origin

Experimental biology + phylogeny + philosophy required

Thank you

For the invitation

People:

- IHPST
- Gustave Roussy (Eric Solary team; William Vainchencker)
- Institut Jacques Monod (Michel Vervoort team)

Funding:

Cancéropôle, SIRIC Socrate (Gustave Roussy), CNRS

Some ref:

- Laplane L (2016) Cancer Stem Cells: Philosophy and Therapies. Harvard University Press.
- Laplane L et Solary E (2017). "Identité des cellules souches normales et cancéreuses". *Médecine/Sciences* 33(10) : 899-904.
- Laplane L (2018) "Cancer stem cells modulate patterns and processes of evolution in cancers". *Biology and Philosophy* 33(3-4): 18

