Abstract
Even though complexity is a concept that is ubiquitously used by biologists and philosophers of biology, it is rarely made precise. I argue that a clarification of the concept is neither trivial nor unachievable, and I propose a unifying framework based on the technical notion of “effective complexity” that allows me to do justice to conflicting intuitions about biological complexity, while taking into account several distinctions in the usage of the concept that are often overlooked. In particular, I propose a distinction between two kinds of complexity, “mechanical” and “emergent”, which can be understood as different ways of relating the effective complexity of mechanisms and of behaviors in biological explanations. I illustrate the adequacy of this framework by discussing different attempts to understand intracellular organization in terms of pathways and networks. My framework provides a different way of thinking about recent philosophical debates, for example, on the difference between mechanistic and topological explanations and about the concept of emergence. Moreover, it can contribute to a proper assessment of metascientific arguments that invoke biological complexity.
Read more.